Modeling of Mesoscale Variability in Biofilm Shear Behavior

نویسندگان

  • Pallab Barai
  • Aloke Kumar
  • Partha P. Mukherjee
چکیده

Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a) initial increase in stiffness due to strain stiffening of polymer matrix, and b) eventual reduction in stiffness because of tear in polymeric substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoscale Modeling of Dynamic Failure of Ceramic Polycrystals

Mesoscale models are used to study dynamic deformation and failure in silicon carbide (SiC) and aluminum oxynitride (AlON) polycrystals. Elastic and anisotropic elastic-plastic crystal models represent mechanical behavior of SiC and AlON and grains, respectively. Cohesive zone models represent intergranular fracture. Failure data that can be used to inform macroscopic continuum models of cerami...

متن کامل

Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method

One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...

متن کامل

Comparison of using Different Modeling Techniques on the Prediction of the Nonlinear Behavior of R/C Shear Walls

Abstract: Reinforced concrete shear walls have been used throughout the world as known resisting elements for the lateral wind and earthquake loads. They are mostly designed and constructed based on elastic calculations and therefore resulting in un-economical sections. In order to overcome this weakness, scientists have proposed different methodologies to account for the non linear behavior of...

متن کامل

Shear-Wave Dynamic Behavior using Two Different Orientations

For laterally complex media, it may be more suitable to take a different orientation of thedisplacement vector of Shear-waves. This may change the sign of several imaginary reflections andconversion coefficients to be used in reservoir characterization and AVO (Amplitude Versus Offset)analysis or modeling. In this new convention the positive direction of the displacement vector ofreflected Shea...

متن کامل

Modeling Pseudomonas aeruginosa biofilm detachment

.................................................................................................................................................................................. 3 Introduction............................................................................................................................................................................ 5 Modeling approach...............

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016